Расчет импульсных трансформаторов- это очень просто!

Расчет импульсных трансформаторов- это очень просто!

От правильного расчета импульсного трансформатора зависит бесперебойная и надежная работа схемы импульсного источника питания. Бесперебойный источник питания высокой мощности должен обладать «чистым синусом» на выходе из устройства. Это условие обязан обеспечить импульсный трансформатор

Расчет импульсного трансформатора рассмотрим на примере наиболее часто применяемого импульсного трансформатора с конструкцией сердечника и обмотками тороидального типа.

Они отличаются меньшими весом и размерами, чем аналогичные устройства, например, трансформатора с сердечником броневого типа. Для тороидальных трансформаторов характерно лучшее охлаждение и высокий КПД. Периметр сердечника позволяет распределить проводник обмотки более равномерно, что способствует уменьшению влияния  поля рассеяния, благодаря этому отпадает необходимость создания экранирования импульсного трансформатора.

Для расчета тороидального ИТ с целью ускорить процесс и исключить случайную ошибку используют специально разработанную таблицу. Она, кстати, явилась прототипом автоматической программной версии расчета. Использование табличного расчета позволяет ускорить процесс и дает представление обо всех происходящих в работе импульсного трансформатора процессах. Расчет аналогичен расчету ИТ с броневым и бронестержневым Ш-образным сердечником.

Рис. №1. Таблица основных расчетов тороидальных импульсных трансформаторов, где: Рr  — габаритная мощность; w1 – число  витков на вольт для сердечника из сталей марки Э310, Э320; w2 – число витков на 1 вольт на стальной сердечник марки  Э340; Э350; Э360; S – площадь поперечного сечения провода; Δ – разрешенная плотность тока в катушке; η – КПД тр-ра.

Первое действие проектирования импульсного трансформатора – выбор материала. Для большинства импульсных трансформаторов используется холоднокатаное стальное железо: Э310; Э320; Э380 с лентой толщиной до 0,5 мм. Если толщина ленты до 0,1 мм выбирается сталь Э340; Э350; Э360

Для намотки трансформаторов допускается использовать изоляцию снаружи и между обмоток. Изоляция, расположенная между слоями позволяет сделать укладку проводника ровным слоем, повышает толщину намотки в диаметре внутри сердечника.

Рис. №2.Форма конструкции сердечника тороидального импульсного трансформатора А – Магнитопроводный сердечник; С – Проводник для индуктивной связи.

Проводник должен быть выбран с высокой степенью прочности изоляции к механическим и электрическим воздействиям марок (ПЭЛШО; ПЭШО или провод ПЭВ-2). Для изоляции выбирается лакоткань, фторопластовая пленка (ПЭТФ) и батистовая лента.

Расчет импульсного трансформатора

Исходные параметры, необходимые для выполнения расчетов импульсных трансформаторов: Р2 (Вт) – импульсная мощность; U1 (В) – импульсное напряжение; Rи (Ом) – сопротивление источника; tи  (с) – время продолжительности импульса; fn (Гц) – частота движения импульсов; λ = 0,04 коэффициент искажения верхней, прямой части прямоугольного импульса

Пример расчета трансформатора

Если известно напряжение питания Uc = 220B; напряжение выхода Uв = 24В; Iн = 1,8А

  1. действием определяем мощность «вторички»:

Р = Uв * Iн = 24 * 1,8 = 43,2 Вт

  1. действие. Высчитывает габаритную мощность тр-ов:

Рг = Р/ η 43,2 / 0,92 = 48Вт; показатель КПД выбираем из табличного значения в ряду габаритных значений мощностей.

  1. Рассчитываем   г /1,2 = 1,2 = 5,8см2
  2. Выбираем габариты сердечника Dc; dc; hс

S = Dc – dc /2 * hс

Наиболее вероятный, приближенный тип сердечника – ОЛ50/80 – 40; площадь его сечения равна (8 – 5)/ 2 * 4 = 6 см2 (около расчетной)

  1. Находим внутренний диаметр сердечника, здесь справедливо утверждение dc  ≥ d/с

d/с =  =  = 3,8 см, что означает 5  3,8,

  1. Предположительно выбираем сердечник стали Э320, количество витков определяем, как:

w1 = 33.3/S = 33.3/6 = 5.55 витков на 1 вольт

  1. Находим допустимое число витков «первички» и «вторички»:

W1-1 = w1 * Uс – 5.55 * 220 = 1221 виток; W1-2 = w1 * Uн = 5,55 * 24 = 133 витка.

Ввиду того, что в трансформаторах с тороидальным сердечником наблюдается малый магнитный поток рассеяния, падение напряжения в обмотках определяется с помощью активного сопротивления. Значение падения напряжения в катушках трансформатора тороидального типа  намного меньше, чем этот параметр для бронестержневых трансформаторов. Для того, чтобы компенсировать потери во вторичной обмотке увеличивают число витков на 3%.

W1-2 = 133 * 1,03 = 137 витков

  1. Находим диаметр провода для обмотки

d1 = 1.33 , I1 – ток в «первичке» трансформатора, определяется по формуле: I1 = 1,1 (Pг/Uc) = 1,1 * 48/220 = 0,24а

d1 = 1,33  = 0,299мм

находим подходящий диаметр проводника, берем в сторону увеличения (0,31мм);

d2 – 1,33  = 1,19  = 0,8 мм.

Расчет произведенный по табличной методике, испытан, трансформаторы спроектированные по ней дают отличные результаты. Совершенствование методик расчета не стоит на месте и постоянно совершенствуется, сделать импульсный трансформатор самому вполне реально, он будет работать, и показывать хорошие результаты.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.




Добавить комментарий: