Транзистор как выключатель-функция полупроводника

Транзистор как выключатель

Какую функцию выполняет в современных схемах такой элемент как выключатель?

Он обеспечивает открытую схему (незамкнутую), когда он находится в выключенном состоянии и обеспечивает замкнутую схему, когда находится во включенном состоянии. Это очень важная функция, без которой деятельность многих устройств была бы просто немыслима.

Другими словами, можно сказать, что выключатель обеспечивает бесконечное сопротивление или полное сопротивление во время своего выключенного состояния, и он обеспечивает нулевое сопротивление или полное сопротивление во время своего включенного состояния.

Отсюда получается, что выключатель можно назвать этаким резистором с контролируемым включением/выключением, который обеспечивает и нулевое и бесконечное сопротивление для схемы без какого-либо среднего значения. Да, возможно, кому-то подобное название покажется не самым точным, но оно более-менее передаёт суть деятельности выключателя в краткой форме.

С другой стороны, транзистор может быть рассмотрен как контролируемый резистор, ведь сопротивление между эмиттером и коллектором контролируется током в переходе базы-эмиттера. За счёт того, что ток на базе эмиттере производит контроль, сопротивление на эмиттере-коллекторе может быть установлено бесконечным, но подобным образом не получится сделать сопротивление равным нулю (результат не будет идеален). Впрочем, несмотря на то, что идеального значения не получается, это не мешает быть транзистору весьма популярным в качестве выключателя.

Транзистор обеспечивает довольно большое сопротивление для схемы, но оно не идеально бесконечно. Транзистор также обеспечивает очень маленькое сопротивление, но оно также не идеально нулевое.

В характеристиках транзистора имеется 3 области:

— область выключения;

— линейная область;

— область насыщения.

В линейной области, для того чтобы напряжение на коллекторе-эмиттере (VCE) имело широкий диапазон, ток на коллекторе (IC) сохраняется неизменным. В силу того, что напряжение имеет широкий диапазон и ток на коллекторе почти неизменный, будет очень сильная потеря энергии, если транзистор действует в этой области.

Но на практике, в выключателе, когда он выключен, напряжение, которое через него проходит, будет равно напряжению на открытой схеме, но ток при этом равен нулю, отсюда следует, что не происходит потери энергии. Подобным образом, когда выключатель включен, ток, проходящий через выключатель настолько силён, насколько силён ток на замкнутой схеме, но напряжение, которое проходит через выключатель, равно нулю, откуда следует, что также не происходит потери энергии.

Если нужно сделать так, чтобы транзистор действовал как выключатель, то нужно сделать, чтобы он работал таким образом, чтобы потери энергии во время включенного и выключенного состояния были бы близки к нулю, или очень низки. Единственный случай, когда это возможно, когда транзистор действует только в предельной области характеристик. Есть две предельные области в характеристиках транзистора. Это область выключения и область насыщения.

На рисунке, где ток на базе-эмиттере или просто ток на базе равен нулю, ток коллектора (IC) будет иметь очень маленькое неизменное значение для большого диапазона напряжения на коллекторе-эмиттере (VCE). Так что если транзистор действует с током на базе равным нулю или меньше нуля, то ток, проходящий через коллектор на эмиттер (IC) очень слабый.

Отсюда транзистор в выключенном состоянии, но в то же время, потеря энергии через транзистор (выключатель) i.e. IC x VCE несущественна в силу того, что IC очень мал. Отсюда вытекает, что транзистор работает как выключатель на открытой схеме или как выключающий переключатель.

Теперь, допустим, что транзистор подсоединён в серию с нагрузкой сопротивления RL. В нормальном состоянии напряжение, проходящее через нагрузку, является VL. Отсюда ток, проходящий через нагрузку, составляет:

Если транзистор действует с током на базе I1, для которого ток на коллекторе C1 больше, чем IL, то транзистор работает в области насыщения. Тут, для любого тока (C1), проходящего через коллектор транзистора на его эмиттер (IC), будет очень маленькое напряжение на коллекторе-эмиттере (VCE).

Отсюда следует, что в этой ситуации ток, проходящий через транзистор, настолько силён, насколько ток на нагрузке, но напряжение, проходящее через транзистор, (VCE) довольно низкое, откуда вытекает то обстоятельство, что потеря энергии в транзисторе опять несущественна.

Транзистор ведёт себя примерно как выключатель на замкнутой схеме или переключатель включения. Так что для использования транзистора как выключателя, необходимо убедиться в том, что применяемый на базе-эмиттере ток достаточно силён для того, чтобы удержать транзистор в области насыщения для обеспечения тока на нагрузке.

Как уже было сказано, потеря энергии в транзисторе, который является выключателем, очень низка, однако не равна нулю. Отсюда следует, что это не идеальный выключатель, но он приемлем для специфических устройств. Теперь, для регулирования энергии постоянного тока на входе, на нагрузке, необходимо использовать транзистор-выключатель таким образом, чтобы он периодически то включал схему, то выключал, обеспечивая тем самым желаемую энергию на выходе.

Для этого понадобится специфическая форма волны тока на базе, благодаря которой транзистор переходит в свои область выключения и область насыщения, периодически, для обеспечения тока на нагрузке. Типичная периодическая форма волны тока на базе в целом достигается за счёт импульсного генератора на базе микропроцессора.

Когда выбирается транзистор для использования в качестве выключателя, необходимо проявлять осторожность в отношении номинального значения транзистора. Дело в том, что во время включенного состояния, весь ток на нагрузке будет течь через транзистор. Если этот ток больше, чем безопасное значение способности транзистора к выдерживанию тока на коллекторе-эмиттере, то транзистор может перманентно выйти из строя из-за того, что перегреется.

Снова в выключенном состоянии, всё напряжение на открытой схеме, на нагрузке, появится в транзисторе. Транзистор должен быть в состоянии выдержать это напряжение, в противном случае переход коллектор-эмиттер будет разорван, и транзистор станет включенным, вместо того чтобы быть выключенным.

Ещё одна деталь должна быть учтена при использовании транзистора как выключателя. Приёмник тепла подходящего размера и проектирование, которое всегда необходимо для транзистора. Каждый транзистор нуждается в некотором времени для перехода из выключенного состояния во включенное состояние и наоборот.

Несмотря на то, что это самое время очень мало и оно может быть менее нескольких микросекунд, но это всё-таки не ноль. Во время периода, в течение которого выключатель находится во включенном состоянии, ток (IC) будет усиливаться, в то время как напряжение на коллекторе-эмиттере (VCE) будет падать к нулю.

Так как ток усиливается с нуля (в идеале) до своего максимума, и напряжение падает со своего максимального значения до нуля (в идеале), будет возникать момент, когда оба они будут иметь свои максимальные значения. В этой точке происходит пиковая потеря энергии.

Таким же путём происходит и максимальная потеря энергии в транзисторе, когда он переходит в выключенное состояние из включенного состояния. Отсюда следует, что максимальная потеря энергии происходит в транзисторе во время переходного периода изменения состояния, но растрата энергии всё ещё вполне средняя, так как переходный период довольно невелик.

Для работы с низкой частотой генерируемое тепло может быть средним. Но если частота работы весьма высока, то будет существенная потеря энергии и соответствующая генерация тепла. Стоит заметить, что генерация тепла не происходит только в течение переходного состояния. Она также происходит во время включенного или выключенного состояния транзистора. Однако количество тепла в течение постоянного состояния довольно мала и несущественна.

Возможно, кому-то использование транзистора в качестве выключателя покажется сложным после вышесказанного, однако это не так. Просто нужно обратить внимание на некоторые необходимые моменты и запомнить определённые вещи. Теоретическая часть, охватывающая эту тему, хоть и не маленькая, но относительно простая.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.




Добавить комментарий: